Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Parasitol ; 255: 108652, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37939822

RESUMO

Louse flies (Diptera: Hippoboscidae) are obligatory hematophagous ectoparasites of birds and mammals. These widely distributed parasitic flies may have a significant impact on wild and farm animals by feeding on their blood and transmitting bloodborne pathogens. However, despite their ecological importance, louse flies are clearly underrepresented in host-parasite research and implementation of genetic approaches in this group is generally hampered by lacking molecular tools. In addition, louse flies that parasitize long-distance migrants can travel long distances with their avian hosts, facilitating the large-scale spread of pathogens across landscapes and geographic regions. Given the wide diversity of louse flies that parasitize a variety of avian hosts, their direct negative impact on host survival, and their high potential to transmit bloodborne pathogens even along avian migration routes, it is surprising that our knowledge of louse fly ecology is rather modest and incomplete. Here, we aimed to develop a novel molecular tool for polyxenous avian louse flies from the genus Ornithomya, which are among the most common and widely distributed representatives of Hippoboscidae family, to improve research of their genetic population structure and molecular ecology. Using the Illumina Mi-seq sequencing, we conducted a genome-wide scan in Ornithomya avicularia to identify putative microsatellite markers. A panel of 26 markers was selected to develop amplification protocols and assess polymorphism in the Central European population of O. avicularia, as well as to test for cross-amplification in a congeneric species (O. chloropus). A genome-scan in O. avicularia identified over 12 thousand putative microsatellite markers. Among 26 markers selected for a population-wide screening; one did not amplify successfully and three were monomorphic. 22 markers were polymorphic with at least two alleles detected. Two markers showed presence of null alleles. A cross-amplification of microsatellite markers in O. chloropus revealed allelic polymorphism at 14 loci, with the mean allelic richness of 3.78 alleles per locus (range: 2-8). Our genome-wide scan in O. avicularia provides a novel and powerful tool for molecular research in Ornithomya louse flies. Our panel of polymorphic microsatellite loci should allow genotyping of louse flies from geographically distinct populations and from a wide spectrum of avian hosts, enhancing population genetic and phylogeographic research in Ornithomya.


Assuntos
Dípteros , Ftirápteros , Animais , Dípteros/parasitologia , Ftirápteros/genética , Aves/genética , Genética Populacional , Polimorfismo Genético , Repetições de Microssatélites , Mamíferos/genética
2.
Insects ; 13(9)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36135556

RESUMO

Ctenolepisma calvum was first described in Sri Lanka (Ceylon) in 1910, and this island is probably the origin of this species. Later, it was also found in the Caribbean (Cuba and Trinidad and Tobago). Up until the present, it has only been identified within buildings (a synanthropic species), and its natural habitat is unknown. In 2007, it was discovered in Germany and was considered a neobiotic species of Lepismatidae in Europe. It has rapidly spread throughout Europe and beyond in recent years. This led us to analyze the available data of the first occurrences in Germany, Austria, and other European countries. Furthermore, we compared the spread inside of museums in Vienna (Austria) and Berlin (Germany). These museums have been monitored for a long period with sticky traps, representing the best source of information on the dispersion dynamics of Ctenolepisma calvum. We found a scattered occurrence of this species in 18 countries in Europe (including Russia and Ukraine). The first record for Poland has not previously been published; however, this species has been present there since 2014. Surprisingly, it was found in Hungary in 2003, but a record was only published online in 2021. Additionally, in Germany and Austria, where most data are available, the spread of the species does not follow any clear pattern. In museums in Berlin, the species has only been found in one location. In contrast, the species rapidly spread in museums in Vienna between 2014 and 2021, from four to 30 locations, and it is now a well-established species with occasional high abundance. We examined the spread of the species at three spatial scales: (i) Europe, (ii) national, and (iii) regional. Our observations indicate that it is possibly distributed with materials (packaging material, hygiene articles, paper, cardboard, and collection items). Little is yet known about the biology of this introduced pest. We describe its preferred habitat within buildings, its climate requirements, and its potential to act as a new museum pest in Central Europe. This species seems to thrive at room temperature in buildings. Further impact on the species due to climate change in the future is also discussed. We offer a simple morphological key and a detailed identification table to help correct species identification.

3.
Zootaxa ; 4189(2): zootaxa.4189.2.11, 2016 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-27988740

RESUMO

Four species of Cytaea Keyserling, 1882 are diagnosed, redescribed, and illustrated: C. laticeps (Thorell, 1878), C. nimbata (Thorell, 1881), C. rubra (Walckenaer, 1837), and C. sinuata (Doleschall, 1859).


Assuntos
Aranhas/anatomia & histologia , Aranhas/classificação , Distribuição Animal , Estruturas Animais/anatomia & histologia , Estruturas Animais/crescimento & desenvolvimento , Animais , Tamanho Corporal , Feminino , Masculino , Tamanho do Órgão , Aranhas/crescimento & desenvolvimento
4.
Zootaxa ; 3949(4): 555-66, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25947824

RESUMO

Eight nominal species of Cytaea were studied. The poorly known Cytaea fibula Berland, 1938, C. flavolineata Berland, 1938 and C. oreophila Simon, 1902 are redescribed, diagnosed and illustrated. Cytaea aeneomicans Simon, 1902 and C. guentheri Thorell, 1895 are synonymized with C. dispalans (Thorell, 1892), while C. whytei Prószynski & Deeleman-Reinhold, 2010 is synonymized with C. haematica Simon, 1902.


Assuntos
Aranhas/classificação , Estruturas Animais/anatomia & histologia , Estruturas Animais/crescimento & desenvolvimento , Animais , Tamanho Corporal , Feminino , Masculino , Tamanho do Órgão , Aranhas/anatomia & histologia , Aranhas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...